
Solution to Problems ♠–12

Problem A: There are 9 delegates at a conference, each speaking
at most three languages. Given any three delegates, at least 2 speak a
common language. Show that there are three delegates with a common
language.

Answer: Suppose towards contradiction that no three delegates speak
the same language.

Then every candidate can share a language with at most 3 other
delegates, because if (s)he shared a language with 4, (s)he would have
to share the same language with 2 of them (since (s)he can only speak 3
languages). This creates a triple of delegates each speaking that shared
language.

Let A be one of the delegates. By the preceding paragraph, there
are 5 delegates who do not share a language with A. Let one of them
be B. By the same argument, there must be at least one of the other
4 (call her C) who does not share a language with B. But now no two
of A, B, C share a language, a contradiction.
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Problem B: A set X has n elements, n ≥ 3. Given n+ 1 subsets of
X, each with 3 members, show that we can always find two which have
just one element in common.

Answer: We show this claim by induction on n ≥ 3.
Let P (n) be the assertion that

if a set X 6= ∅ has at most n elements, and A is a collec-
tion of at least |X|+1 subsets of X, each with 3 members,
then there are A,B ∈ A such that |A ∩B| = 1.

We will verify that the formula P (n) satisfies the assumptions of the
Theorem on Mathematical Induction.

[Basic Step]: We note that P (3) asserts that

if |X| ≤ 3 and A is a collection of |X|+ 1 subsets of X,
each with 3 members,
then there are A,B ∈ A such that |A ∩B| = 1.

However, a set with at most 3 elements has at most one 3 element
subset, so the hypothesis of the above implication cannot be satisfied.
Consequently whole implication is satisfied vacuously, and the state-
ment P (3) is true.

[Inductive Step]: We are going to show that(
∀n ≥ 3

)(
P (n) ⇒ P (n + 1)

)
.

To this end suppose that n ≥ 3 is arbitrary but fixed. Assume also
that P (n) holds true, that is

(⊕)n if |X| ≤ n and A is a collection of at least |X| + 1 subsets of
X, each with 3 members, then there are A,B ∈ A such that
|A ∩B| = 1.

Assume that Y is a set with at most n+1 elements and B is a collection
of at least |Y |+ 1 subsets of X, each with 3 members. If |Y | ≤ n then
our inductive assumption (⊕)n applies to Y and the desired conclusion
follows. So we may assume |Y | = n + 1 and |B| = n + 2.

Suppose towards contradiction that

(~)
(
∀A,B ∈ B

)(
|A ∩B| 6= 1

)
.

If every element of Y was in at most 3 of the sets from B, there would
be at most n + 1 subsets, so some a ∈ Y is in at least 4 of the subsets
from B. Suppose one of them is A = {a, b, c} ∈ B. There are at least
three others sets B,C,D ∈ B containing a, and each of them must
intersect {b, c} (because of (~)). Consequently, b (say) must be in at
least two of B,C,D.
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Without loss of generality, B = {a, b, d} and C = {a, b, e}. By our
assumption (~), any other set I ∈ B containing a must intersect each
of the sets A \ {a}, B \ {a} and C \ {a}. Therefore,

(∗)1 every set I ∈ B containing a must contain b,

because otherwise it would have to contain c, d and e, which is impos-
sible. Similarly,

(∗)2 every set I ∈ B containing b must contain a.

Thus

B∗ def
= {E ∈ B : {a, b} ∩ E 6= ∅} = {E ∈ B : a, b ∈ E}.

Let m = |B∗| and note that m + 2 ≤ n + 1, so m ≤ n− 1.
If {a, b, k} ∈ B∗, then k cannot belong to any other set E ∈ B: if

k ∈ E, then (~) implies {a, b}∩E 6= ∅ and consequently also a, b ∈ E,
so E = {a, b, k}.

Consider the set X of the (n + 1) − (m + 2) = n −m − 1 elements
other than those which belong to sets in B∗, i.e.,

X = Y \
⋃
B∗.

Let A = B \ B∗. Then for each E ∈ A we have E ⊆ X. Also,
|A| = |B| − |B∗| = n − m + 2 ≥ n − (n − 1) + 2 = 3. Consequently
|X| ≥ 4 and n + 1 ≥ 4 + (m + 2), so |B| = n + 2 ≥ m + 7. This gives
|A| ≥ 7 and hence 5 ≤ |X| ≤ n and |X| + 1 ≤ |A|. Applying the
inductive hypothesis (⊕)n to X and A we find sets A,B ∈ A ⊆ B such
that |A ∩B| = 1, contradicting (~).

Therefore P (n + 1) is true. Thus we have shown that

P (n) ⇒ P (n + 1)

and as our n was arbitrary we may conclude(
∀n ≥ 3

)(
P (n) ⇒ P (n + 1)

)
.

Consequently the assumptions of the Theorem on Mathematical Induc-
tion are satisfied and, by this theorem, we may conclude that the claim
in the problem holds true.
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